
SELECTED CHAPTERS OF PHYSICAL CHEMISTRY OF SOLUTIONS

Free Radicals

Species with unpaired electrons

Methods of preparation

$Ph_{3}C^{\bullet} + PhCH_{3} \rightarrow Ph_{3}CH + PhCH_{2}^{\bullet}$

in water:

$$Ph_{3}CH \xrightarrow{HO^{-}} Ph_{3}C^{-} \xrightarrow{[O]} Ph_{3}C^{\bullet}$$

 $Ph_3CCl \xrightarrow{Ag} Ph_3C^{\bullet} + AgCl$

Free radicals are paramagnetic.

They are detected via the ESR (or EPR) method

Different ways of free radicals formation

Photolysis, thermolysis

$$Ph_{2}C=O \xrightarrow{h\nu} Ph_{2}C=O^{*} \rightarrow Ph_{2}C^{\bullet} - O^{\bullet}$$

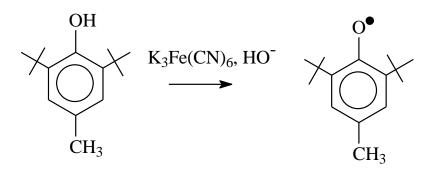
singlet triplet

 $Ph_2C^{\bullet} - O^{\bullet} + H(CH_3)_2CPh \rightarrow Ph_2C^{\bullet} - OH + {}^{\bullet}C(CH_3)_2Ph$ cumene

Examples of homolytic dissociation

G. Razuvaev, V. Ipatiev:

$$Hg(CH_{3})_{2} \xrightarrow{\text{in CCl}_{4}} CH_{3}Hg^{\bullet} + {}^{\bullet}CH_{3}$$


$${}^{\bullet}CH_{3} + CCl_{4} \rightarrow CH_{3}Cl + CCl_{3}^{\bullet}$$

$$CH_{3}Hg^{\bullet} + CCl_{4} \rightarrow CH_{3}HgCl + CCl_{3}^{\bullet}$$

$$2CCl_{3}^{\bullet} \rightarrow C_{2}Cl_{6}$$

Chemical oxidation

Two-phase reaction (water/benzene; Cook)

Other inorganic oxidants: PbO₂; Ag⁺; Ce⁴⁺

$$ArO^{-} + Ce^{4+} \rightarrow ArO^{\bullet} + Ce^{3+}$$

Electrochemical oxidation

$$\operatorname{RCOO}^{-} \xrightarrow{-\mathrm{e}} \operatorname{CO}_2 + \operatorname{R}^{\bullet} \rightarrow \frac{1}{2}\operatorname{R}_2$$

Reduction

$$Ph_3C^+ + V^{2+} \rightarrow Ph_3C^{\bullet} + V^{3+}$$

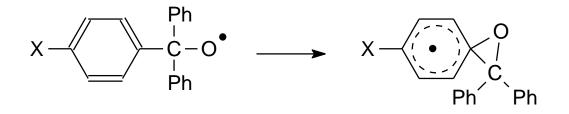
The Fenton reaction:

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + HO^{\bullet} + HO^{-}$$

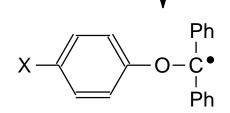
Al/Ni alloy:

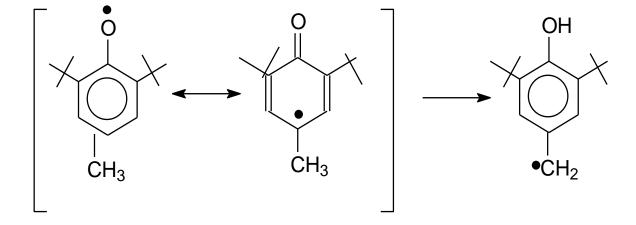
$$C_{60} + Al/Ni \text{ alloy} \rightarrow C_{60}^{\bullet-}$$

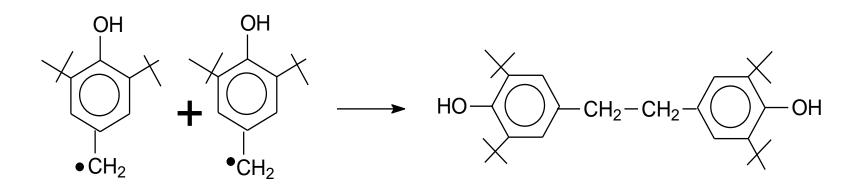
 $C_{60}^{\bullet-} + O_2^{\bullet-} \rightarrow C_{60}^{\bullet-}$ (colloid solution)

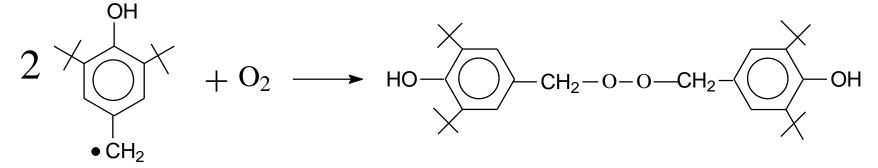

Reduction

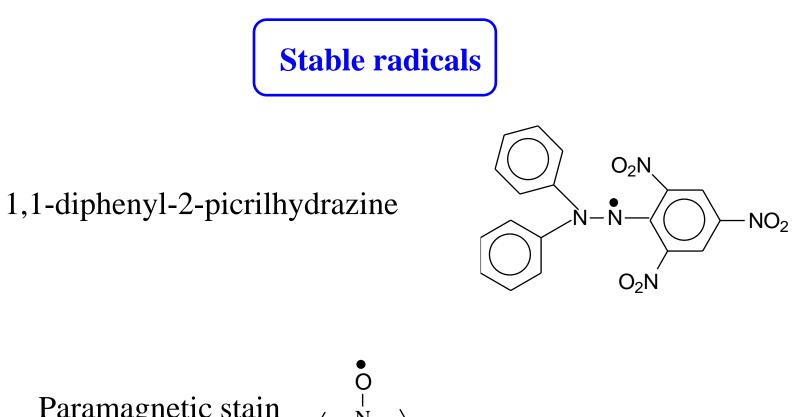
Other reductors: K or Na amalgam

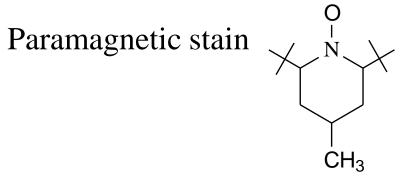

Electrochemical reduction

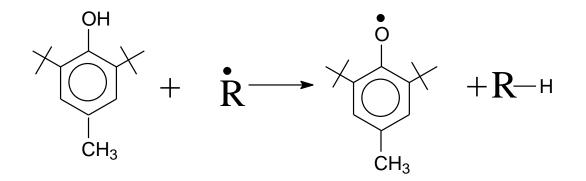

$$R \xrightarrow{e^{-}} R^{\bullet -} \xrightarrow{e^{-}} R^{2-}$$

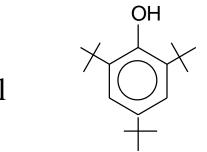

Some reactions of radicals


Rearrangement of radicals

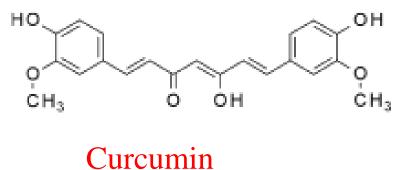


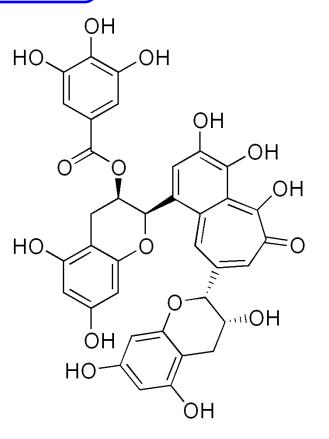



Dimerization in the presence of oxygen



Radical scavengers



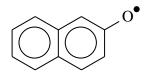


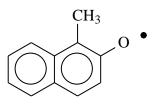
Ionol

Antioxidants. Polyphenols

Polyphenols arefound in plants and have healing properties

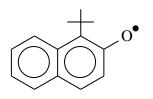
Theaflavin-3-gallate, a plant-derived polyphenol, an ester of gallic acid and a theaflavin core


Factors that determine the stability of radicals


(Conjugation

and steric

hindrance)


 $au_{1/2}$

< 2 s; 5	°C
----------	----

10 s; 5 °C

38.5 h; 20 °C

42 h; 20 °C

20 s

General scheme of oxidation of organic matter. Inhibition of oxidation processes

 $(0) RH \xrightarrow{O_2} R^{\bullet} \text{ (origin of chains)}$ $(1) R^{\bullet} + O_2 \rightarrow ROO^{\bullet}$ $(2) ROO^{\bullet} + RH \rightarrow ROOH + R^{\bullet} \text{ (continuation of chains)}$ $(3) ROOH \rightarrow RO^{\bullet} + HO^{\bullet} \text{ (branching degenertion)}$

(4) $\mathbb{R}^{\bullet} + \mathbb{R}^{\bullet} \to \mathbb{R} - \mathbb{R}$ (break of chains) (5) $\mathbb{ROO}^{\bullet} + \mathbb{R}^{\bullet} \to \mathbb{ROOR}$ (break of chains) (6) $\mathbb{ROO}^{\bullet} + \mathbb{ROO}^{\bullet} \to \mathbb{ROH} + \mathbb{R}^{/}\mathbb{COR} + \mathbb{O}_{2}$ (break of chains)

 $(7) ROO^{\bullet} + InH \rightarrow ROOH + In^{\bullet} \quad (inhibition)$ $(8) In^{\bullet} + In^{\bullet} \rightarrow In - In \quad (inhibition)$ $(9) In^{\bullet} + ROO^{\bullet} \rightarrow InOOR \quad (inhibition)$